Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Monika Simon, ${ }^{\text {a }}$ Carol Csunderlik, ${ }^{\text {a }}$ Peter G. Jones, ${ }^{\text {b }}{ }^{\text {* }}$ Ion Neda ${ }^{c}$ and Axel K. Fischer ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Organic Chemistry, Polytechnical University of Timisoara, Bocsa 6, 1900 Timisoara, Romania, ${ }^{\mathbf{b}}$ Institut für
Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, ${ }^{\mathrm{c}}$ InnoChemTech GmbH, Hagenring 30, 38106 Braunschweig, Germany, and ${ }^{\mathbf{d}}$ Chemisches Institut, Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=133 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.097$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A second polymorph of bis(o-nitrophenyl) carbonate

The title compound, $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$, displays s-cis-s-cis conformation of the carbonate group. Bond lengths and angles (\AA and ${ }^{\circ}$) involving this group are: $\mathrm{C}=\mathrm{O} 1.1839(13), \mathrm{C}-\mathrm{O}$ 1.3462 (13) and 1.3483 (13), $\mathrm{O}-\mathrm{C}_{\text {arom }} 1.3947$ (13) and 1.3994 (13); $\mathrm{O}=\mathrm{C}-\mathrm{O} 127.21$ (10) and 127.02 (10), $\mathrm{O}-\mathrm{C}-\mathrm{O}$ 105.77 (9). The aromatic rings are perpendicular to the carbonate plane.

Comment

Bis(o-nitrophenyl) carbonate, (I), was synthesized some 50 years ago (Deutsch \& Fernö, 1950), but has not been widely used in synthesis, in contrast to its p-isomer, which has been used for activating the carboxylate group in peptide synthesis (Glatthard \& Matter, 1963) and as a carbonylation reagent (Nesnyov \& Pel'kis, 1962; Izdebsky \& Pawlok, 1989; Takata et al., 1991; Enders et al., 1999). Recently we noticed that the o-isomer is more reactive than the p-isomer in reactions with N -nucleophiles in organic solvents (Simon et al., 2002), a property that might be extended to other reactions.

(I)

As part of our investigations of the structure and reactivity of organic carbonates, we have begun to study the solid state structures of some organic carbonates. Here we present the structure of (I). This had already been determined by King \& Bryant (1990) in space group Pc (with $Z=2$) after recrystallization from dichloromethane/hexane; our structure, recrystallized from benzene, represents a new polymorph.

S-cis-s-cis

s-cis-s-trans

s-trans-s-trans

In principle, the s-cis-s-cis, s-cis-s-trans or s-trans-s-trans conformations are all possible for organic carbonates; early studies of dimethyl and diphenyl carbonate by IR spectroscopy (Oki \& Nakanishi, 1971) or by dipole moments and Molar Kerr constants (Chia et al., 1981) showed that the probable conformations were s-cis-s-cis or s-cis-s-trans. However, molecular polarization measurements of various diaryl carbonates by Exner \& Jehlicka (1981) established that all investigated organic carbonates adopted only the s-cis-s-cis

Received 31 March 2003
Accepted 3 April 2003
Online 23 April 2003
conformation. Finally, X-ray investigations of diphenyl (King \& Bryant, 1993), bis(o-nitrophenyl) and bis(2,4-dinitrophenyl) carbonates (King \& Bryant, 1990) unambiguously demonstrated s-cis-s-cis conformations.

The molecule of (I) is shown in Fig. 1. The carbonate moiety displays the s-cis-s-cis conformation (cf. torsion angles in Table 1); atoms C11 and C21 lie 0.186 (2) and 0.155 (2) A., respectively, on opposite sides of the plane defined by $\mathrm{C} 1, \mathrm{O} 1$, O 2 and O 3 . The aromatic rings are perpendicular to this plane [interplanar angles 86.41 (3) and $86.86(3)^{\circ}$]. In the previous modification (King \& Bryant, 1990), only one aromatic ring was perpendicular to the carbonate group; corresponding angles were 89.9 and 54.6°.

Bond lengths and angles of the carbonate moiety (Table 1) may be considered normal. A search of the Cambridge Structural Database (Allen, 2002) for the diaryl carbonate moiety revealed 15 hits, with mean values of 105.7° for the O -$\mathrm{C}-\mathrm{O}$ and 127.1° for the $\mathrm{O}=\mathrm{C}-\mathrm{O}$ angles, $1.175 \AA$ for the $\mathrm{C}=\mathrm{O}$ and $1.342 \AA$ for the $\mathrm{C}-\mathrm{O}$ bonds of 21 carbonate groups. Some of the structures involved cyclic carbonate oligomers (Nagahata et al., 2000).

Short intramolecular contacts C1 \cdots O5, 2.7829 (14), and $\mathrm{C} 1 \cdots \mathrm{O}$, 2.7228 (13) \AA, are observed, as are intermolecular contacts O2 $\cdots \mathrm{C} 23,2.9642$ (14), and O3‥N2, 3.0143 (13) \AA (operator for second atoms: $x, \frac{1}{2}-y, \frac{1}{2}+z$). The molecular packing is further determined by four weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

The structure of the corresponding para derivative is described in the following paper (Simon et al., 2003).

Experimental

Triphosgene (bis(trichloromethyl) carbonate) was treated with six equivalents of o-nitrophenol and six equivalents of triethylamine in dichloromethane and the product was recrystallized from benzene (Simon et al., 2001).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$
$M_{r}=304.21$
Monoclinic, $P 2_{1} / c$
$a=11.9789(12) \AA$
$b=11.9076(12) \AA$
$c=9.1495(11) \AA$
$\beta=92.128(3){ }^{\circ} \AA^{\circ}$
$V=1304.2(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD diffractometer
ω scans
Absorption correction: none
9339 measured reflections
3286 independent reflections

$$
\begin{aligned}
& D_{x}=1.549 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4316 \\
& \quad \text { reflections } \\
& \theta=2.4-27.0^{\circ} \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=133(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.55 \times 0.27 \times 0.17 \mathrm{~mm}
\end{aligned}
$$

2594 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=28.5^{\circ}$
$h=-16 \rightarrow 15$
$k=-11 \rightarrow 15$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.097$
$S=1.06$
3286 reflections
199 parameters
H-atom parameters constrained

Figure 1
04
The molecule of the title compound in the crystal. Ellipsoids are drawn at the 50% probability level and H -atom radii are arbitrary.

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.1839(13)$	$\mathrm{O} 3-\mathrm{C} 1$	$1.3483(13)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.3462(13)$	$\mathrm{O} 3-\mathrm{C} 21$	$1.3994(13)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.3947(13)$		
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11$	$115.40(8)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 3$	$127.02(10)$
$\mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 21$	$114.06(8)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 3$	$105.77(9)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$127.21(10)$		
$\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$8.87(16)$	$\mathrm{C} 21-\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 2$	$-172.96(8)$
$\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 3$	$-171.56(8)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12$	$91.49(13)$
$\mathrm{C} 21-\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 1$	$6.62(15)$	$\mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 21-\mathrm{C} 22$	$85.88(12)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {i }}$	0.95	2.43	3.1060 (14)	128.3
$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 1^{\text {ii }}$	0.95	2.57	3.3782 (15)	142.9
C16-H16 . $\mathrm{O}^{\text {Oiii }}$	0.95	2.44	3.1756 (15)	134.6
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O}^{\text {iv }}$	0.95	2.62	3.5351 (15)	162.8

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

H atoms were included using a riding model, with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA$; $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie and the Romanian Ministry of Education and Research, CNCSIS (Grant D,19) is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1998). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Chia, L. H. L., Kwan, K. J. \& Huang, H. H. (1981). Austr. J. Chem. 34, 349-351. Deutsch, A. \& Fernö, O. (1950). Swed. Patent 128,292; Chem. Abstr. 44, 9477c. Enders, D., Wortmann, L., Dücker, B. \& Raabe, G. (1999). Helv. Chim. Acta, 82, 1195-1201.
Exner, O. \& Jehlicka, V. (1981). Collect. Czech. Chem. Commun. 46, 856-860. Glatthard, R. \& Matter, M. (1963). Helv. Chim. Acta, 46, 795-798. Izdebsky, I. \& Pawlok, D. (1989). Synthesis, pp. 423-425.
King, J. A. Jr. \& Bryant, G. L. Jr. (1990). Acta Cryst. C46, 1330-1332.
King, J. A. Jr. \& Bryant, G. L. Jr. (1993). Acta Cryst. C49, 550-551.
Nagahata, R., Sugiyama, J., Goyal, M., Goto, M., Asai, M., Ueda, M. \& Takeuchi, K. (2000). Polym. Adv. Technol. 11, 294-300.
Nesnyov, E. P. \& Pel'kis, P. S. (1962). J. Gen. Chem. USSR, 32, 3929-3931.

Oki, M. \& Nakanishi, H. (1971). Bull. Chem. Soc. Jpn, 44, 3419-3422. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
Simon, M., Csunderlik, C., Jones, P. G., Neda, I. \& Fischer, A. K. (2003). Acta Cryst. E59, o691-o692.
Simon, M., Csunderlik, C., Medeleanu, M. \& Dinache, A. (2002). Rev. Chim. 53, 535-539.
Simon, M., Csunderlik, C. \& Tirnaveanu, A. (2001). Rev. Chim. 52, 371376.

Takata, T., Matsuoka, H. \& Endo, T. (1991). Chem. Lett. pp. 2091-2094.

